N-(methylamino)isobutyric acid inhibits proliferation of CFSC-2C hepatic stellate cells.
نویسندگان
چکیده
Activation of hepatic stellate cells (HSCs) involves the induction of ECM protein synthesis and rapid cell proliferation. Thus, agents that interfere with either process could potentially mitigate the development of liver disease by reducing the synthesis of proteins associated with fibrosis or by reducing the number of activated HSC. Previously, we described that the non-metabolizable amino acid analog N-(methylamino)isobutyric acid (MeAIB) reduced hepatic collagen content of rats in a model of CCl(4)-induced liver injury, and in vitro studies using CFSC-2G cells indicated that MeAIB directly reduced collagen synthesis. However, the MeAIB-mediated reduction of hepatic collagen, in vivo, following liver injury was associated with a decrease in hepatic alpha-smooth muscle actin (alpha-SMA) which suggested that MeAIB also inhibited the activation of HSCs. Because HSC activation is inseparable from proliferation, the purpose of this study was to examine the effect of MeAIB treatment on the proliferation of HSCs in an in vitro model utilizing CFSC-2G cell cultures. In these studies, MeAIB effectively inhibited the proliferation of CFSC-2G cells by interfering with the progression of the cells through the G(1)-phase of the cell cycle which delayed entry into S-phase. MeAIB prevented the phosphorylation of p70S6 kinase (p70S6K) at Thr389 and reduced the phosphorylation at Thr421/Ser424. Because p70S6K is required for G(1)-cell cycle progression and is known to be regulated by nutrient availability, this correlates well with MeAIB interfering with the proliferation of CFSC-2G HSCs. In addition, the rate of protein synthesis was reduced by MeAIB treatment following mitogenic stimulation, which agrees with a p70S6K-mediated reduction in translation. These data are consistent with MeAIB inhibiting the proliferation of CFSC-2G cells by altering the mitogen activated pathway(s) leading to phosphorylation of p70S6K by a yet to be described mechanism.
منابع مشابه
Inhibition of hepatic stellate cell collagen synthesis by N-(methylamino)isobutyric acid.
The increased deposition of extracellular matrix by hepatic stellate cells following liver injury, in a process known as activation, is considered a key mechanism for increased collagen content of liver during the development of liver fibrosis. We report that N-(methylamino)isobutyric acid (MeAIB), a specific inhibitor of System A-mediated amino acid uptake, reduces the accumulation of collagen...
متن کاملBerberine inhibits hepatic stellate cell proliferation and prevents experimental liver fibrosis.
Proliferation of hepatic stellate cells (HSCs) is central for the development of fibrosis during liver injury. Our aim in this study was to determine whether berberine could inhibit HSC proliferation in vitro and prevent experimental liver fibrosis in vivo. Activated rat hepatic stellate cells (CFSCs) were incubated with various concentrations (0-20 microg/ml) of berberine. After 48 h incubatio...
متن کاملExogenous nucleosides alter the intracellular nucleotide pool in hepatic cell cultures. Implications in cell proliferation and function.
BACKGROUND & AIMS Dietary nucleotides are reported to influence the growth and functioning of the liver. The objective of the study was to evaluate the uptake and incorporation of exogenous nucleosides by hepatic cells, and the potential implications for cell proliferation and function. METHODS Liver stellate cell line CFSC-2G and primary hepatocytes in single and mixed cultures were exposed ...
متن کاملSodium-dependent neutral amino acid transport by human liver plasma membrane vesicles.
The activities of several selected Na(+)-dependent amino acid transporters were identified in human liver plasma membrane vesicles by testing for Na(+)-dependent uptake of several naturally occurring neutral amino acids or their analogs. Alanine, 2-(methylamino)isobutyric acid, and 2-aminoisobutyric acid were shown to be almost exclusively transported by the same carrier, system A. Kinetic anal...
متن کاملRosmarinic acid inhibits proliferation and induces apoptosis of hepatic stellate cells.
Hepatic stellate cells (HSCs), activated during liver injury, are defined as the most important target in the therapy of hepatic fibrosis. In the present study, we evaluated the effect of Rosmarinic acid (RosA) on the proliferation and apoptosis in activated hepatic stellate cells (HSC-T6), which is useful to decrease this cell population. The proliferation of HSC-T6 was significantly inhibited...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical pharmacology
دوره 68 2 شماره
صفحات -
تاریخ انتشار 2004